this post was submitted on 15 Dec 2025
757 points (98.6% liked)
Technology
77873 readers
4983 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Yeah but they don't have the money to introduce quality governance into this. So the brain trust of Reddit it is. Which explains why LLMs have gotten all weirdly socially combative too; like two neckbeards having at it—Google skill vs Google skill—is a rich source of A+++ knowledge and social behaviour.
If I'm creating a corpus for an LLM to consume, I feel like I would probably create some data source quality score and drop anything that makes my model worse.
As far as I know that’s generally what is often done, but it’s a surprisingly hard problem to solve ‘completely’ for two reasons:
The more obvious one - how do you define quality? When you’re working with the amount of data LLMs require as input and need to be checked for on output you’re going to have to automate these quality checks, and in one way or another it comes back around to some system having to define and judge against this score.
There’s many different benchmarks out there nowadays, but it’s still virtually impossible to just have ‘a’ quality score for such a complex task.
Perhaps the less obvious one - you generally don’t want to ‘overfit’ your model to whatever quality scoring system you set up. If you get too close to it, your model typically won’t be generally useful anymore, rather just always outputting things which exactly satisfy the scoring principle, nothing else.
If it reaches a theoretical perfect score, it would just end up being a replication of the quality score itself.
Good points. What's novel information vs. wrong information? (And subtly wrong is harder to understand than very wrong)
At some point it's hitting a user who is giving feedback, but I imagine data lineage once it gets to the end user its tricky to understand.