this post was submitted on 30 Jan 2026
34 points (75.8% liked)

Technology

79674 readers
4342 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related news or articles.
  3. Be excellent to each other!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
  9. Check for duplicates before posting, duplicates may be removed
  10. Accounts 7 days and younger will have their posts automatically removed.

Approved Bots


founded 2 years ago
MODERATORS
 

Research shows AI helps people do parts of their job faster. In an observational study of Claude.ai data, we found AI can speed up some tasks by 80%. But does this increased productivity come with trade-offs? Other research shows that when people use AI assistance, they become less engaged with their work and reduce the effort they put into doing it—in other words, they offload their thinking to AI.

It’s unclear whether this cognitive offloading can prevent people from growing their skills on the job, or—in the case of coding—understanding the systems they’re building. Our latest study, a randomized controlled trial with software developers as participants, investigates this potential downside of using AI at work.

This question has broad implications—for how to design AI products that facilitate learning, for how workplaces should approach AI policies, and for broader societal resilience, among others. We focused on coding, a field where AI tools have rapidly become standard. Here, AI creates a potential tension: as coding grows more automated and speeds up work, humans will still need the skills to catch errors, guide output, and ultimately provide oversight for AI deployed in high-stakes environments. Does AI provide a shortcut to both skill development and increased efficiency? Or do productivity increases from AI assistance undermine skill development?

In a randomized controlled trial, we examined 1) how quickly software developers picked up a new skill (in this case, a Python library) with and without AI assistance; and 2) whether using AI made them less likely to understand the code they’d just written.

We found that using AI assistance led to a statistically significant decrease in mastery. On a quiz that covered concepts they’d used just a few minutes before, participants in the AI group scored 17% lower than those who coded by hand, or the equivalent of nearly two letter grades. Using AI sped up the task slightly, but this didn’t reach the threshold of statistical significance.

Importantly, using AI assistance didn’t guarantee a lower score. How someone used AI influenced how much information they retained. The participants who showed stronger mastery used AI assistance not just to produce code but to build comprehension while doing so—whether by asking follow-up questions, requesting explanations, or posing conceptual questions while coding independently.

you are viewing a single comment's thread
view the rest of the comments
[–] suicidaleggroll@lemmy.world 3 points 20 hours ago* (last edited 20 hours ago)

I do the same. I start with the large task, break it into smaller chunks, and I usually end up writing most of them myself. But occasionally there will be one function that is just so cookie-cutter, insignificant to the overall function of the program, and outside of my normal area of experitise, that I'll offload that one to an LLM.

They actually do pretty well for tasks like that, when given a targeted task with very specific inputs and outputs, and I can learn a bit by looking at what it ended up generating. I'd say it's only about 5-10% of the code that I write that falls into the category where an LLM could realistically take it on though.