this post was submitted on 17 Sep 2025
261 points (98.5% liked)
Technology
75258 readers
3597 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Something very important that anti-nuclear but otherwise environmental minded people should realize is this sentence: " There's no practical way to build domestic batteries with this capacity using the technology of 2025."
Also applies to grid storage. There does not exist a chemical energy storage solution that can substitute for "baseload" power. It's purely theoretical much like fusion power. Sure maybe in 50 years, but right now IT DOESN'T EXIST. Economically, practically, or even theoretically.
Why do I bring this up? Because I've seen too many people think that solar and wind can replace all traditional power plants. But if you are anti-nuclear, you are just advocating for more fossil fuels. Every megawatt of wind or solar, has a megawatt of coal or gas behind it and thus we are increasing our greenhouse gas emission everytime we build "green" generation unless we also build Nuclear power plants. /soapbox
It's very infuriating talking to people about this because they never really accept that nuclear power is necessary. They spend all their time complaining about how it's dangerous (it isn't) and how it's very expensive, and how you don't have a lot of control over its output capacity. And yeah, all of those are true, but so what, the only other option is to burn some dead trees which obviously we don't want to do.
Just because nuclear has downsides doesn't mean you can ignore it, unless of course you want to invent fusion just to spite me, in which case I'll be fine with that.
Well, unfortunately some people are using nuclear as an excuse to argue that we don't need any renewables at all and that they should be banned entirely. They do this because they know that nuclear faces extreme regulatory and societal challenges and it would allow coal, diesel and gas to continue unabated.
So it creates a backlash where renewable advocates feel they have to fight nuclear to survive.
The new tack is to conflate nuclear energy with fossil fuels. As in assuming that nuclear energy is "legacy" power generation, and that obviously we need to use modern gernation like solar and wind, and magical grid-level storage technologies that don't exist. Also ignore that baseload power is still required, and is currently fulfilled with Natural Gas and Coal.
This has been studied, and we don't need nuclear. All the solutions are sitting right there.
https://www.amazon.com/No-Miracles-Needed-Technology-Climate/dp/1009249541
Jacobson is a moron who's work has been criticized by dozens of other scientists, that he kept suing because he does not like being contradicted.
Well I'm not going to buy the book to find out what they are so all I'm going to go ahead and say is this. Yes there are solutions such as battery storage (although they do tend to be extremely explodey) and using the power to pump water around, or using mirrors to heat up salt in insulated containers, but they are all very specific solutions that will only work in very particular situations, which we don't always have.
Almost like we can have many solutions where one of them is workable in any given situation.
Edit: also, as for "explody" batteries, that's a factor of certain lithium chemistries. It's not even all lithium chemistries. Sodium and flow batteries are usually better options for grid storage, anyway, and neither has particularly notable safety issues.
In US, and EU is having similar nightmare, nuclear was last built at $15/watt. Installing solar is under $1/watt, and for 20 equivalent hours of nuclear per day (less demand at night means not full production even if available) equivalent to $5/watt-day. $1/watt capital costs is 2c/kwh for solar, and for full day production needs 10c/kwh. All before financing. Nuclear is 30c/kwh. It adds 10 extra years of construction financing, requires political bribes to suppress alternative supply whenever they decide to begin operations, uranium purchases/disposal, expensive skilled operations staff, security, disaster insurance.
Solar does need batteries for time shifting its daily supply. At current LFP prices of $100/kwh, 1c/kwh full cycle is prefinancing cost. and so 3c/kwh if triple the charging/discharging daily capacity. 6 hours of storage is a very high number in power systems. It will capture all energy from a northern summer. It will rarely fully discharge with any time shifting incentives to daytime (much higher convenience to consumers and industry) providing resilience to rainy days. A 2c/kwh value (before financing which is apples to apples comparison to nucclear) means a 5gw solar + 30gwh (much lower if enough private EVs are available for time shifting needs) battery costs 12c/kwh or $8B vs a $15B equivalent 1GW nuclear solution. Both last 60 years due to low battery charge/discharge rates and capacity cycle use, with much lower maintenance costs/downtime for life extension costs for solar/battery system vs keeping a nuclear reactor operational. No/minimal operations costs.
Yes. Nuclear shills are frauds who should be frustrated in their theft of the commons.
I agree with this assessment of battery technology, I'm curious what your thoughts on storage through other means, such as dams, kinetic batteries, heat batteries, that style of thing? I understand that it'd be a massive undertaking, but if we really put our nose to the grindstone we might be able to pull off a good amount of power storage through methods that already exist.
A country like France would need around 20 truly massive STEPs like Grand’Maison to provide for a single winter night (~60GW for ~14h). That’s 100-200km² to put under water, a massive ecological disaster, and a massive hazard.
And you must find a way to produce enough energy and find enough water to recharge your STEPs in the next 10h before the next night.
And that’s with the current France needs, having only 25-30% of its energy being decarbonized electricity, it’s getting even worse if we go to electrical heating and transports.
Powering an entire country without hydro, geo, nuclear or fossils is just plain science fiction. And hydro and geo cannot be built everywhere, so realistically, you either go fossils, or nuclear to have clean electricity.
And you can verify it empirically: even with trillion invested in solar and wind, the only countries which have decarbonized their electricity have massive hydro/geo/nuclear.
Building a dam causes massive amounts of ecological damage, plus unless you're building it in the middle of nowhere you're probably going to be turning people out of their homes, out of their entire towns. We could never build enough dams to be able to meet demand so even trying would be pointless. You would be destroying huge amounts of landscape for no reason.
Kinetic batteries can only store power up to a point, the more power you want them to store the larger they need to be. Again to compensate for base load you would have to have a either a lot of kinetic batteries or a few enormous ones. Plus they are maintenance intensive since they are giant spinning things, or great big heavy falling things.
Heat batteries are a good idea and have relatively little in the way of downsides, but they only work where it's hot, not just sunny but hot. So the number of places you can build them is limited.
If only we could get hold of some astrophage or something.
Another myth is that hydroelectric is "green." It's absolutely not. The huge amount of land required to build something like the hoover dam or the three-gorges dam is massively destructive to the existing ecology. It's often overlooked, but land use has to be part of any environmentally sound analysis.
I would say that while the Hoover Dam, or the Three-gorges dam by themselves are acceptable, they are wholly impossible solutions for grid level storage for the entire united states/China. How practical do you think it would be to build thousands of hoover dams?
Other options like kinetic batteries etc, all come down to energy density. The highest energy density options that humans can harness are nuclear Isotopes like Uranium 238, or Plutonium 239 (what powers the voyager probes) After that is lithium batteries at ~<1% density of a nuclear battery. Everything else is fractions of a percent as efficient. Sure there are some specific use cases where a huge fly-wheel makes sense to build (data centers for example) but those cases are highly specific, and cannot be scaled out to "grid-level." The amount of resources required per kilowatt is way too high, and you'd be better off just building some more power-plants.
Unclear if you’re misinformed or disingenuous.
Hoover Dam does generate power, but it’s not an energy storage project to time-shift intermittent clean energy generation to match grid consumption. That’s known as pumped hydroelectric energy storage, and it requires having paired reservoirs in close geographic proximity with a substantial elevation difference. It’s not an ideal technology for several reasons, but it’s the largest type of grid-scale storage currently deployed. Fundamentally it’s gravitational potential energy storage using water as the transport medium.
A higher-efficiency but not yet fully proven technology also uses gravity and elevation differences, but relies on train rails and massive cars. Here’s one company leading the charge, as it were.
Nuclear isn’t a good option to balance out the variability of wind and solar because it’s slow to ramp up and down. Nuclear is much better suited to baseline generation.
There are plenty of other wacky energy storage ideas out there, such as pumping compressed air into depleted natural gas mines, and letting it drive turbines on its way back out. That might also be riddled with problems, but it’s disingenuous to claim that chemical energy storage is the only (non-) option and therefore increasing wind and solar necessarily also increase fossil fuel scaling.
All hydro is automatically "time shifting storage" when new solar is added to power the daytime. Just turn on the turbines at evening peak full blast, and at night. Average global capacity factor of hydro is 45% because the water reservoir is not sufficient to go full blast 24/7/365. Obviously, hydro time shifting is also highly complementary to wind.
Hoover dam’s water release schedule is driven by requests from water rightsholders further downstream. Power generation is great, but the dam’s primary design purpose has always been facilitating agricultural irrigation.
That said, I bet you’re right that the water flow rate could be varied throughout each day to help balance electric grid needs. I assume that will likely come into play as we get further along the path to intermittent green power generation.
Flooding levels updam is a concern (but not for Hoover) in general. Yes, daily/weekly flow rate downstream is also a concern. But not hourly flow rate.
Again, i'm talking energy density. All those other wacky ideas aren't viable at all. Yes I know that the hoover dam is for generation, but the idea of pumped reserve power is literally identical to hydroelectric generation. The only difference is we would have a man-made solar/wind powered pump fill the resevoir, instead a natural source of solar power fill the resevoir. Either way, it's a huge amount of land use for it to be considered "green."
Additionally I never claimed nuclear power should be used as a peak generation, it should 100% used for baseload replacing all of our fossil fuel generators, with huge taxes being applied to carbon generators.
As an aside:
This idea is trash and as far as I can tell the hypothetical existence of this is an oil industry fud campaign. The only viable version of this is pumped hydro, which has the land use problem I've already described.