this post was submitted on 11 Nov 2025
388 points (96.6% liked)

Technology

76808 readers
2658 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related news or articles.
  3. Be excellent to each other!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
  9. Check for duplicates before posting, duplicates may be removed
  10. Accounts 7 days and younger will have their posts automatically removed.

Approved Bots


founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] CheeseNoodle@lemmy.world 2 points 1 day ago (1 children)

Even a genuinely perfect model would immediately skew to bias; the moment some statistical fluke gets incorporated into the training data that becomes self re-enforcing and it'll create and then re-enforce that bias in a feedback loop.

[–] Jason2357@lemmy.ca 2 points 1 day ago

Usually these models are trained on past data, and then applied going forward. So whatever bias was in the past data will be used as a predictive variable. There are plenty of facial feature characteristics that correlate with race, and when the model picks those because the past data is racially biased (because of over-policing, lack of opportunity, poverty, etc), they will be in the model. Guaranteed. These models absolutely do not care that correlation != causation. They are correlation machines.