this post was submitted on 04 Apr 2025
363 points (88.4% liked)
Technology
69298 readers
3875 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this is one of the most interesting things about Llms that i have ever read
That bit about how it turns out they aren't actually just predicting the next word is crazy and kinda blows the whole "It's just a fancy text auto-complete" argument out of the water IMO
It really doesn't. You're just describing the "fancy" part of "fancy autocomplete." No one was ever really suggesting that they only predict the next word. If that was the case they would just be autocomplete, nothing fancy about it.
What's being conveyed by "fancy autocomplete" is that these models ultimately operate by combining the most statistically likely elements of their dataset, with some application of random noise. More noise creates more "creative" (meaning more random, less probable) outputs. They do not actually "think" as we understand thought. This can clearly be seen in the examples given in the article, especially to do with math. The model is throwing together elements that are statistically proximate to the prompt. It's not actually applying a structured, logical method the way humans can be taught to.
Genuine question regarding the rhyme thing, it can be argued that "predicting backwards isn't very different" but you can't attribute generating the rhyme first to noise, right? So how does it "know" (for lack of a better word) to generate the rhyme first?
It already knows which words are, statistically, more commonly rhymed with each other. From the massive list of training poems. This is what the massive data sets are for. One of the interesting things is that it's not predicting backwards, exactly. It's actually mathematically converging on the response text to the prompt, all the words at the same time.
Which is exactly how we do it. Ours is just a little more robust.
We also check to see if the word that popped into our heads actually rhymes by saying it out loud. Actual validation steps we can take is a bigger difference than being a little more robust.
We also have non-list based methods like breaking the word down into smaller chunks to try to build up hopefully more novel rhymes. I imagine professionals have even more tools, given the complexity of more modern rhyme schemes.