No Stupid Questions
No such thing. Ask away!
!nostupidquestions is a community dedicated to being helpful and answering each others' questions on various topics.
The rules for posting and commenting, besides the rules defined here for lemmy.world, are as follows:
Rules (interactive)
Rule 1- All posts must be legitimate questions. All post titles must include a question.
All posts must be legitimate questions, and all post titles must include a question. Questions that are joke or trolling questions, memes, song lyrics as title, etc. are not allowed here. See Rule 6 for all exceptions.
Rule 2- Your question subject cannot be illegal or NSFW material.
Your question subject cannot be illegal or NSFW material. You will be warned first, banned second.
Rule 3- Do not seek mental, medical and professional help here.
Do not seek mental, medical and professional help here. Breaking this rule will not get you or your post removed, but it will put you at risk, and possibly in danger.
Rule 4- No self promotion or upvote-farming of any kind.
That's it.
Rule 5- No baiting or sealioning or promoting an agenda.
Questions which, instead of being of an innocuous nature, are specifically intended (based on reports and in the opinion of our crack moderation team) to bait users into ideological wars on charged political topics will be removed and the authors warned - or banned - depending on severity.
Rule 6- Regarding META posts and joke questions.
Provided it is about the community itself, you may post non-question posts using the [META] tag on your post title.
On fridays, you are allowed to post meme and troll questions, on the condition that it's in text format only, and conforms with our other rules. These posts MUST include the [NSQ Friday] tag in their title.
If you post a serious question on friday and are looking only for legitimate answers, then please include the [Serious] tag on your post. Irrelevant replies will then be removed by moderators.
Rule 7- You can't intentionally annoy, mock, or harass other members.
If you intentionally annoy, mock, harass, or discriminate against any individual member, you will be removed.
Likewise, if you are a member, sympathiser or a resemblant of a movement that is known to largely hate, mock, discriminate against, and/or want to take lives of a group of people, and you were provably vocal about your hate, then you will be banned on sight.
Rule 8- All comments should try to stay relevant to their parent content.
Rule 9- Reposts from other platforms are not allowed.
Let everyone have their own content.
Rule 10- Majority of bots aren't allowed to participate here. This includes using AI responses and summaries.
Credits
Our breathtaking icon was bestowed upon us by @Cevilia!
The greatest banner of all time: by @TheOneWithTheHair!
view the rest of the comments
Not a number theorist, but the wikipedia reads ok for me, so I'll give an attempt. Answer based on the AMS's Translated Math Monographs 240, by Kazuya Kato et. al..
A sample of the questions class field theory wants to address: a) Which primes p are the sum of 2 squares, p=a^{2} + b^{2}?
b) What about other formulae, say eg p=a^{2} +2b^{2}?
c) Consider a Galois extension. Take a prime ideal P in the smaller ring. For which primes does this ideal factor when we look at the larger ring?
d) When is the factorization square free (unramified)?
e) What's the smallest cyclotomic extension that contains sqrt(M) for a given M?
If we look at the integers, you may already know the answers to several of these! And they all have something kinda magic in common. For (a), for example, the primes that are the sum of 2 squares are exactly those with p = 1 mod 4. For example, 5=2^2 + 1^2, yet 7 cannot be written as a sum of two squares. The answer to question (b) is similar! We can do it exactly when p=1,3 mod 8.
For ( c ), for concreteness let's take the extension of the rationals Q to the rationals with a square root of -3, Q(sqrt(-3)). The prime ideal (7) factors as (7, 1-sqrt(-3)) (7, 1+sqrt(-3)) (a product of two distinct prime ideals; unramified), as do the ideals (13), (19), (31), and (37). But (5), (11), (17), (23) and (29) all don't. Perhaps you notice a pattern: p=1 mod 3 ? factors. p=2 mod 3? doesn't. There's also a unique ramified prime, (3) = (sqrt(-3))^2. There will generally only be a finite number of ramified primes. Do a dozen more examples and you'll notice a spooky pattern: the ramified primes seem to show up in the modulus (in this example, 3 was ramified and the factorization pattern works mod 3. If 7 and 23 are ramified, the factorization cases will work modulo 7*23=161). [Quadratic extensions are not special btw; the factorization of (p) in Q(zeta_5) (Q with a 5th root of 1) depends on p mod 5.]
On the face of it, why would modular arithmetic be the relevant condition? And why does the modulus seem to care about ramification?
A major result of Galois theory is that there's a correspondence between subgroups of (Z/NZ)^* (integers modulo N under multiplication) and intermediate field extensions between Q and a cyclotomic extension Q(zeta_N). Prime ideal ramification and factoring can be stated in terms of this correspondence. Further, they show that every finite abelian extension of Q lives inside some Q(zeta_N). This result lets us explain all of (a)-(e). Generalizing it is one of the big motivations of class field theory. If we start not with Q, but with say Q(sqrt(-3)), what still holds? What is the right generalization of cyclotomic extensions and (Z/NZ)^*?
My understanding is that this program is quite successful. There's a replacement for both that's only somewhat more technical/tedious, and that gives similar results. One of the bigger successes is generalizing 'reciprocity' laws (the quadratic case is often taught in undergrad number theory; it's about the surprising fact that p is a square mod q depends on if q is a square mod p).