this post was submitted on 06 Mar 2025
2 points (100.0% liked)
Technology
69391 readers
2712 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
They were only able to receive signals from the bare minimum to achieve a solution (4 GPS and 1 Galileo). Their achieved accuracy was +/- 1.5km and +/- 2m/s. That is good enough in astronomic scales to get you to a planet, but it isn't going to help failed landings or autonomous landings.
I don't think there was any new tech involved, just a receiver put on a moon lander to see if it could detect signals. And this won't really do anything for Mars for two reasons: 1) the signal strength would be too small for any reasonable antenna to detect GPS L1/L5 at Mars distances, and 2) the distance would make the geometry be unusable to trilaterate a solution... think about a triangle where two lengths are 100 million miles and the third length is 100 miles. That is a completely worthless geometry for trilateration of a position solution. Even if we could somehow detect a GPS signal at Mars, best case is we get atomic clock time.