this post was submitted on 04 Apr 2025
363 points (88.4% liked)

Technology

69346 readers
3334 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related news or articles.
  3. Be excellent to each other!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
  9. Check for duplicates before posting, duplicates may be removed
  10. Accounts 7 days and younger will have their posts automatically removed.

Approved Bots


founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] harryprayiv@infosec.pub 185 points 3 weeks ago (51 children)

To understand what's actually happening, Anthropic's researchers developed a new technique, called circuit tracing, to track the decision-making processes inside a large language model step-by-step. They then applied it to their own Claude 3.5 Haiku LLM.

Anthropic says its approach was inspired by the brain scanning techniques used in neuroscience and can identify components of the model that are active at different times. In other words, it's a little like a brain scanner spotting which parts of the brain are firing during a cognitive process.

This is why LLMs are so patchy at math. (Image credit: Anthropic)

Anthropic made lots of intriguing discoveries using this approach, not least of which is why LLMs are so terrible at basic mathematics. "Ask Claude to add 36 and 59 and the model will go through a series of odd steps, including first adding a selection of approximate values (add 40ish and 60ish, add 57ish and 36ish). Towards the end of its process, it comes up with the value 92ish. Meanwhile, another sequence of steps focuses on the last digits, 6 and 9, and determines that the answer must end in a 5. Putting that together with 92ish gives the correct answer of 95," the MIT article explains.

But here's the really funky bit. If you ask Claude how it got the correct answer of 95, it will apparently tell you, "I added the ones (6+9=15), carried the 1, then added the 10s (3+5+1=9), resulting in 95." But that actually only reflects common answers in its training data as to how the sum might be completed, as opposed to what it actually did.

In other words, not only does the model use a very, very odd method to do the maths, you can't trust its explanations as to what it has just done. That's significant and shows that model outputs can not be relied upon when designing guardrails for AI. Their internal workings need to be understood, too.

Another very surprising outcome of the research is the discovery that these LLMs do not, as is widely assumed, operate by merely predicting the next word. By tracing how Claude generated rhyming couplets, Anthropic found that it chose the rhyming word at the end of verses first, then filled in the rest of the line.

"The planning thing in poems blew me away," says Batson. "Instead of at the very last minute trying to make the rhyme make sense, it knows where it’s going."

Anthropic discovered that their Claude LLM didn't just predict the next word. (Image credit: Anthropic)

Anthropic also found, among other things, that Claude "sometimes thinks in a conceptual space that is shared between languages, suggesting it has a kind of universal 'language of thought'."

Anywho, there's apparently a long way to go with this research. According to Anthropic, "it currently takes a few hours of human effort to understand the circuits we see, even on prompts with only tens of words." And the research doesn't explain how the structures inside LLMs are formed in the first place.

But it has shone a light on at least some parts of how these oddly mysterious AI beings—which we have created but don't understand—actually work. And that has to be a good thing.

[–] MudMan@fedia.io 84 points 3 weeks ago (33 children)

Is that a weird method of doing math?

I mean, if you give me something borderline nontrivial like, say 72 times 13, I will definitely do some similar stuff. "Well it's more than 700 for sure, but it looks like less than a thousand. Three times seven is 21, so two hundred and ten, so it's probably in the 900s. Two times 13 is 26, so if you add that to the 910 it's probably 936, but I should check that in a calculator."

Do you guys not do that? Is that a me thing?

[–] Mac@mander.xyz 3 points 3 weeks ago (3 children)

I wouldn't even attempt that in my head.
I can't keep track of things and then recall them later for the final result.

[–] HereIAm@lemmy.world 6 points 3 weeks ago (2 children)

Pen and paper maths I'm pretty decent at, but ask me to calculate anything in my head and it's anyone's guess if I remembered to carry the 1 or not. Ever since learning about aphantasia I'm wondering if the lack of being able to visually store values has something to do with it.

[–] futatorius@lemm.ee 7 points 3 weeks ago* (last edited 3 weeks ago)

Ever since learning about aphantasia I’m wondering if the lack of being able to visually store values has something to do with it.

Here's some anecdotal evidence. Until I was 12 or 13, I could do absurdly complex arithmetical calculations in my head. My memory of it was of visualizing intermediate calculations as if they were on a screen in my head. I'd close my eyes to minimize distracting external stimuli. I'd get pocket money because my dad would get his friends to bet on whether I could correctly multiply two 7-digit phone numbers, and when I won, which I always did, he'd give the money to me. He had an old-school electromechanical calculator he'd use to check the results.

Neither of my parents and none of my many siblings had this ability.

I was able to use a similar visualization technique to memorize long passages of music and text. That stayed with me post-puberty, though again at a lesser extent. I've also been able to learn languages more quickly than most.

Once puberty kicked in, my ability to visualize declined significantly, though to compensate, I learned some mental arithmetics tricks that I still use now. I was able to get an MS in mathematics without much effort, since that relied on higher-level reasoning and not all that much on powerful memory or visualization. I didn't pursue a Ph.D. due to lack of money but I think I could have gotten one (though I despise academic politics).

So I think your comment about aphantasia is at least directionally correct, at least as applied to people. But there's little reason to assume LLMs would do things the same way a human mind does, though both might operate under some similar information-theoretic constraints that would cause convergent evolution.

[–] Lemminary@lemmy.world 3 points 3 weeks ago

I can visually store values and I still struggle. :(

load more comments (29 replies)
load more comments (46 replies)